Observations
Interface
- class ecole.typing.ObservationFunction(*args, **kwargs)[source]
Class repsonsible for extracting observations.
Observation functions are objects given to the
Environment
to extract the observations used to take the next action.This class presents the interface expected to define a valid observation function. It is not necessary to inherit from this class, as observation functions are defined by structural subtyping. It is exists to support Python type hints.
See also
DataFunction
Observation function are equivalent to the generic data function, that is a function to extact an arbitrary type of data.
- __init__(*args, **kwargs)
- before_reset(model: ecole.scip.Model) None [source]
Reset internal data at the start of episodes.
The method is called on new episodes
reset()
right before the MDP is actually reset, that is right before the environment callsreset_dynamics()
.It is usually used to reset the internal data.
- Parameters
model – The
Model
, model defining the current state of the solver.
- extract(model: ecole.scip.Model, done: bool) ecole.typing.Observation [source]
Extract the observation on the given state.
Extract the observation after transitionning on the new state given by
model
. The function is reponsible for keeping track of relevant information from previous states. This can safely be done in this method as it will only be called once per state i.e., this method is not a getter and can have side effects.- Parameters
model – The
Model
, model defining the current state of the solver.done – A flag indicating wether the state is terminal (as decided by the environment).
- Returns
The return is passed to the user by the environment.
Listing
The list of observation functions relevant to users is given below.
Nothing
- ecole.observation.Nothing
alias of
ecole.core.data.NoneFunction
Node Bipartite
- class ecole.observation.NodeBipartite
Bipartite graph observation function on branch-and bound node.
This observation function extract structured
NodeBipartiteObs
.- __init__(self: ecole.observation.NodeBipartite, cache: bool = False) None
Constructor for NodeBipartite.
- Parameters
cache – Whether or not to cache static features within an episode. Currently, this is only safe if cutting planes are disabled.
- before_reset(self: ecole.observation.NodeBipartite, model: ecole.scip.Model) None
Cache some feature not expected to change during an episode.
- extract(self: ecole.observation.NodeBipartite, model: ecole.scip.Model, done: bool) Optional[ecole.observation.NodeBipartiteObs]
Extract a new
NodeBipartiteObs
.
- class ecole.observation.NodeBipartiteObs
Bipartite graph observation for branch-and-bound nodes.
The optimization problem is represented as an heterogenous bipartite graph. On one side, a node is associated with one variable, on the other side a node is associated with one LP row. There exist an edge between a variable and a constraint if the variable exists in the constraint with a non-zero coefficient.
Each variable and constraint node is associated with a vector of features. Each edge is associated with the coefficient of the variable in the constraint.
- class RowFeatures
Members:
bias
objective_cosine_similarity
is_tight
dual_solution_value
scaled_age
- __init__(self: ecole.observation.NodeBipartiteObs.RowFeatures, value: int) None
- bias = <RowFeatures.bias: 0>
- dual_solution_value = <RowFeatures.dual_solution_value: 3>
- is_tight = <RowFeatures.is_tight: 2>
- property name
- objective_cosine_similarity = <RowFeatures.objective_cosine_similarity: 1>
- scaled_age = <RowFeatures.scaled_age: 4>
- property value
- class VariableFeatures
Members:
objective
is_type_binary
is_type_integer
is_type_implicit_integer
is_type_continuous
has_lower_bound
has_upper_bound
normed_reduced_cost
solution_value
solution_frac
is_solution_at_lower_bound
is_solution_at_upper_bound
scaled_age
incumbent_value
average_incumbent_value
is_basis_lower
is_basis_basic
is_basis_upper
is_basis_zero
- __init__(self: ecole.observation.NodeBipartiteObs.VariableFeatures, value: int) None
- average_incumbent_value = <VariableFeatures.average_incumbent_value: 14>
- has_lower_bound = <VariableFeatures.has_lower_bound: 5>
- has_upper_bound = <VariableFeatures.has_upper_bound: 6>
- incumbent_value = <VariableFeatures.incumbent_value: 13>
- is_basis_basic = <VariableFeatures.is_basis_basic: 16>
- is_basis_lower = <VariableFeatures.is_basis_lower: 15>
- is_basis_upper = <VariableFeatures.is_basis_upper: 17>
- is_basis_zero = <VariableFeatures.is_basis_zero: 18>
- is_solution_at_lower_bound = <VariableFeatures.is_solution_at_lower_bound: 10>
- is_solution_at_upper_bound = <VariableFeatures.is_solution_at_upper_bound: 11>
- is_type_binary = <VariableFeatures.is_type_binary: 1>
- is_type_continuous = <VariableFeatures.is_type_continuous: 4>
- is_type_implicit_integer = <VariableFeatures.is_type_implicit_integer: 3>
- is_type_integer = <VariableFeatures.is_type_integer: 2>
- property name
- normed_reduced_cost = <VariableFeatures.normed_reduced_cost: 7>
- objective = <VariableFeatures.objective: 0>
- scaled_age = <VariableFeatures.scaled_age: 12>
- solution_frac = <VariableFeatures.solution_frac: 9>
- solution_value = <VariableFeatures.solution_value: 8>
- property value
- __init__(*args, **kwargs)
- property edge_features
The constraint matrix of the optimization problem, with rows for contraints and columns for variables.
- property row_features
A matrix where each row is represents a constraint, and each column a feature of the constraints.
Milp Bipartite
- class ecole.observation.MilpBipartite
Bipartite graph observation function for the sub-MILP at the latest branch-and-bound node.
This observation function extract structured
MilpBipartiteObs
.- __init__(self: ecole.observation.MilpBipartite, normalize: bool = False) None
Constructor for MilpBipartite.
- Parameters
normalize – Should the features be normalized? This is recommended for some application such as deep learning models.
- before_reset(self: ecole.observation.MilpBipartite, model: ecole.scip.Model) None
Do nothing.
- extract(self: ecole.observation.MilpBipartite, model: ecole.scip.Model, done: bool) Optional[ecole.observation.MilpBipartiteObs]
Extract a new
MilpBipartiteObs
.
- class ecole.observation.MilpBipartiteObs
Bipartite graph observation that represents the most recent MILP during presolving.
The optimization problem is represented as an heterogenous bipartite graph. On one side, a node is associated with one variable, on the other side a node is associated with one constraint. There exist an edge between a variable and a constraint if the variable exists in the constraint with a non-zero coefficient.
Each variable and constraint node is associated with a vector of features. Each edge is associated with the coefficient of the variable in the constraint.
- class ConstraintFeatures
Members:
bias
- __init__(self: ecole.observation.MilpBipartiteObs.ConstraintFeatures, value: int) None
- bias = <ConstraintFeatures.bias: 0>
- property name
- property value
- class VariableFeatures
Members:
objective
is_type_binary
is_type_integer
is_type_implicit_integer
is_type_continuous
has_lower_bound
has_upper_bound
lower_bound
upper_bound
- __init__(self: ecole.observation.MilpBipartiteObs.VariableFeatures, value: int) None
- has_lower_bound = <VariableFeatures.has_lower_bound: 5>
- has_upper_bound = <VariableFeatures.has_upper_bound: 6>
- is_type_binary = <VariableFeatures.is_type_binary: 1>
- is_type_continuous = <VariableFeatures.is_type_continuous: 4>
- is_type_implicit_integer = <VariableFeatures.is_type_implicit_integer: 3>
- is_type_integer = <VariableFeatures.is_type_integer: 2>
- lower_bound = <VariableFeatures.lower_bound: 7>
- property name
- objective = <VariableFeatures.objective: 0>
- upper_bound = <VariableFeatures.upper_bound: 8>
- property value
- __init__(*args, **kwargs)
- property constraint_features
A matrix where each row is represents a constraint, and each column a feature of the constraints.
- property edge_features
The constraint matrix of the optimization problem, with rows for contraints and columns for variables.
Strong Branching Scores
- class ecole.observation.StrongBranchingScores
Strong branching score observation function on branch-and bound node.
This observation obtains scores for all LP or pseudo candidate variables at a branch-and-bound node. The strong branching score measures the quality of each variable for branching (higher is better). This observation can be used as an expert for imitation learning algorithms.
This observation function extracts an array containing the strong branching score for each variable in the problem. Variables are ordered according to their position in the original problem (
SCIPvarGetProbindex
), hence they can be indexed by theBranching
environmentaction_set
. Variables for which a strong branching score is not applicable are filled withNaN
.- __init__(self: ecole.observation.StrongBranchingScores, pseudo_candidates: bool = False) None
Constructor for StrongBranchingScores.
- Parameters
pseudo_candidates – The parameter determines if strong branching scores are computed for pseudo candidate variables (when true) or LP candidate variables (when false).
- before_reset(self: ecole.observation.StrongBranchingScores, model: ecole.scip.Model) None
Do nothing.
- extract(self: ecole.observation.StrongBranchingScores, model: ecole.scip.Model, done: bool) Optional[numpy.ndarray[numpy.float64]]
Extract an array containing strong branching scores.
Pseudocosts
- class ecole.observation.Pseudocosts
Pseudocosts observation function on branch-and-bound nodes.
This observation obtains pseudocosts for all LP fractional candidate variables at a branch-and-bound node. The pseudocost is a cheap approximation to the strong branching score and measures the quality of branching for each variable. This observation can be used as a practical branching strategy by always branching on the variable with the highest pseudocost, although in practice is it not as efficient as SCIP’s default strategy, reliability pseudocost branching (also known as hybrid branching).
This observation function extracts an array containing the pseudocost for each variable in the problem. Variables are ordered according to their position in the original problem (
SCIPvarGetProbindex
), hence they can be indexed by theBranching
environmentaction_set
. Variables for which a pseudocost is not applicable are filled withNaN
.- __init__(self: ecole.observation.Pseudocosts) None
- before_reset(self: ecole.observation.Pseudocosts, model: ecole.scip.Model) None
Do nothing.
- extract(self: ecole.observation.Pseudocosts, model: ecole.scip.Model, done: bool) Optional[numpy.ndarray[numpy.float64]]
Extract an array containing pseudocosts.
Khalil et al. 2016
- class ecole.observation.Khalil2016
Branching candidates features from Khalil et al. (2016).
This observation function extract structured
Khalil2016Obs
.- __init__(self: ecole.observation.Khalil2016, pseudo_candidates: bool = False) None
Create new observation.
- Parameters
pseudo_candidates – Whether the pseudo branching variable candidates (
SCIPgetPseudoBranchCands
) or LP branching variable candidates (SCIPgetPseudoBranchCands
) are observed.
- before_reset(self: ecole.observation.Khalil2016, model: ecole.scip.Model) None
Reset static features cache.
- extract(self: ecole.observation.Khalil2016, model: ecole.scip.Model, done: bool) Optional[ecole.observation.Khalil2016Obs]
Extract the observation matrix.
- class ecole.observation.Khalil2016Obs
Branching candidates features from Khalil et al. (2016).
The observation is a matrix where rows represent all variables and columns represent features related to these variables. See [Khalil2016] for a complete reference on this observation function.
- Khalil2016
Khalil, Elias Boutros, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. “Learning to branch in mixed integer programming.” Thirtieth AAAI Conference on Artificial Intelligence. 2016.
- class Features
Members:
obj_coef
obj_coef_pos_part
obj_coef_neg_part
n_rows
rows_deg_mean
rows_deg_stddev
rows_deg_min
rows_deg_max
rows_pos_coefs_count
rows_pos_coefs_mean
rows_pos_coefs_stddev
rows_pos_coefs_min
rows_pos_coefs_max
rows_neg_coefs_count
rows_neg_coefs_mean
rows_neg_coefs_stddev
rows_neg_coefs_min
rows_neg_coefs_max
slack
ceil_dist
pseudocost_up
pseudocost_down
pseudocost_ratio
pseudocost_sum
pseudocost_product
n_cutoff_up
n_cutoff_down
n_cutoff_up_ratio
n_cutoff_down_ratio
rows_dynamic_deg_mean
rows_dynamic_deg_stddev
rows_dynamic_deg_min
rows_dynamic_deg_max
rows_dynamic_deg_mean_ratio
rows_dynamic_deg_min_ratio
rows_dynamic_deg_max_ratio
coef_pos_rhs_ratio_min
coef_pos_rhs_ratio_max
coef_neg_rhs_ratio_min
coef_neg_rhs_ratio_max
pos_coef_pos_coef_ratio_min
pos_coef_pos_coef_ratio_max
pos_coef_neg_coef_ratio_min
pos_coef_neg_coef_ratio_max
neg_coef_pos_coef_ratio_min
neg_coef_pos_coef_ratio_max
neg_coef_neg_coef_ratio_min
neg_coef_neg_coef_ratio_max
active_coef_weight1_count
active_coef_weight1_sum
active_coef_weight1_mean
active_coef_weight1_stddev
active_coef_weight1_min
active_coef_weight1_max
active_coef_weight2_count
active_coef_weight2_sum
active_coef_weight2_mean
active_coef_weight2_stddev
active_coef_weight2_min
active_coef_weight2_max
active_coef_weight3_count
active_coef_weight3_sum
active_coef_weight3_mean
active_coef_weight3_stddev
active_coef_weight3_min
active_coef_weight3_max
active_coef_weight4_count
active_coef_weight4_sum
active_coef_weight4_mean
active_coef_weight4_stddev
active_coef_weight4_min
active_coef_weight4_max
- __init__(self: ecole.observation.Khalil2016Obs.Features, value: int) None
- active_coef_weight1_count = <Features.active_coef_weight1_count: 48>
- active_coef_weight1_max = <Features.active_coef_weight1_max: 53>
- active_coef_weight1_mean = <Features.active_coef_weight1_mean: 50>
- active_coef_weight1_min = <Features.active_coef_weight1_min: 52>
- active_coef_weight1_stddev = <Features.active_coef_weight1_stddev: 51>
- active_coef_weight1_sum = <Features.active_coef_weight1_sum: 49>
- active_coef_weight2_count = <Features.active_coef_weight2_count: 54>
- active_coef_weight2_max = <Features.active_coef_weight2_max: 59>
- active_coef_weight2_mean = <Features.active_coef_weight2_mean: 56>
- active_coef_weight2_min = <Features.active_coef_weight2_min: 58>
- active_coef_weight2_stddev = <Features.active_coef_weight2_stddev: 57>
- active_coef_weight2_sum = <Features.active_coef_weight2_sum: 55>
- active_coef_weight3_count = <Features.active_coef_weight3_count: 60>
- active_coef_weight3_max = <Features.active_coef_weight3_max: 65>
- active_coef_weight3_mean = <Features.active_coef_weight3_mean: 62>
- active_coef_weight3_min = <Features.active_coef_weight3_min: 64>
- active_coef_weight3_stddev = <Features.active_coef_weight3_stddev: 63>
- active_coef_weight3_sum = <Features.active_coef_weight3_sum: 61>
- active_coef_weight4_count = <Features.active_coef_weight4_count: 66>
- active_coef_weight4_max = <Features.active_coef_weight4_max: 71>
- active_coef_weight4_mean = <Features.active_coef_weight4_mean: 68>
- active_coef_weight4_min = <Features.active_coef_weight4_min: 70>
- active_coef_weight4_stddev = <Features.active_coef_weight4_stddev: 69>
- active_coef_weight4_sum = <Features.active_coef_weight4_sum: 67>
- ceil_dist = <Features.ceil_dist: 19>
- coef_neg_rhs_ratio_max = <Features.coef_neg_rhs_ratio_max: 39>
- coef_neg_rhs_ratio_min = <Features.coef_neg_rhs_ratio_min: 38>
- coef_pos_rhs_ratio_max = <Features.coef_pos_rhs_ratio_max: 37>
- coef_pos_rhs_ratio_min = <Features.coef_pos_rhs_ratio_min: 36>
- n_cutoff_down = <Features.n_cutoff_down: 26>
- n_cutoff_down_ratio = <Features.n_cutoff_down_ratio: 28>
- n_cutoff_up = <Features.n_cutoff_up: 25>
- n_cutoff_up_ratio = <Features.n_cutoff_up_ratio: 27>
- n_rows = <Features.n_rows: 3>
- property name
- neg_coef_neg_coef_ratio_max = <Features.neg_coef_neg_coef_ratio_max: 47>
- neg_coef_neg_coef_ratio_min = <Features.neg_coef_neg_coef_ratio_min: 46>
- neg_coef_pos_coef_ratio_max = <Features.neg_coef_pos_coef_ratio_max: 45>
- neg_coef_pos_coef_ratio_min = <Features.neg_coef_pos_coef_ratio_min: 44>
- obj_coef = <Features.obj_coef: 0>
- obj_coef_neg_part = <Features.obj_coef_neg_part: 2>
- obj_coef_pos_part = <Features.obj_coef_pos_part: 1>
- pos_coef_neg_coef_ratio_max = <Features.pos_coef_neg_coef_ratio_max: 43>
- pos_coef_neg_coef_ratio_min = <Features.pos_coef_neg_coef_ratio_min: 42>
- pos_coef_pos_coef_ratio_max = <Features.pos_coef_pos_coef_ratio_max: 41>
- pos_coef_pos_coef_ratio_min = <Features.pos_coef_pos_coef_ratio_min: 40>
- pseudocost_down = <Features.pseudocost_down: 21>
- pseudocost_product = <Features.pseudocost_product: 24>
- pseudocost_ratio = <Features.pseudocost_ratio: 22>
- pseudocost_sum = <Features.pseudocost_sum: 23>
- pseudocost_up = <Features.pseudocost_up: 20>
- rows_deg_max = <Features.rows_deg_max: 7>
- rows_deg_mean = <Features.rows_deg_mean: 4>
- rows_deg_min = <Features.rows_deg_min: 6>
- rows_deg_stddev = <Features.rows_deg_stddev: 5>
- rows_dynamic_deg_max = <Features.rows_dynamic_deg_max: 32>
- rows_dynamic_deg_max_ratio = <Features.rows_dynamic_deg_max_ratio: 35>
- rows_dynamic_deg_mean = <Features.rows_dynamic_deg_mean: 29>
- rows_dynamic_deg_mean_ratio = <Features.rows_dynamic_deg_mean_ratio: 33>
- rows_dynamic_deg_min = <Features.rows_dynamic_deg_min: 31>
- rows_dynamic_deg_min_ratio = <Features.rows_dynamic_deg_min_ratio: 34>
- rows_dynamic_deg_stddev = <Features.rows_dynamic_deg_stddev: 30>
- rows_neg_coefs_count = <Features.rows_neg_coefs_count: 13>
- rows_neg_coefs_max = <Features.rows_neg_coefs_max: 17>
- rows_neg_coefs_mean = <Features.rows_neg_coefs_mean: 14>
- rows_neg_coefs_min = <Features.rows_neg_coefs_min: 16>
- rows_neg_coefs_stddev = <Features.rows_neg_coefs_stddev: 15>
- rows_pos_coefs_count = <Features.rows_pos_coefs_count: 8>
- rows_pos_coefs_max = <Features.rows_pos_coefs_max: 12>
- rows_pos_coefs_mean = <Features.rows_pos_coefs_mean: 9>
- rows_pos_coefs_min = <Features.rows_pos_coefs_min: 11>
- rows_pos_coefs_stddev = <Features.rows_pos_coefs_stddev: 10>
- slack = <Features.slack: 18>
- property value
- __init__(*args, **kwargs)
- property features
A matrix where each row represents a variable, and each column a feature of the variable.
Variables are ordered according to their position in the original problem (
SCIPvarGetProbindex
), hence they can be indexed by theBranching
environmentaction_set
. Variables for which the features are not applicable are filled withNaN
.The first
Khalil2016Obs.n_static_features
features columns are static (they do not change through the solving process), and the remainingKhalil2016Obs.n_dynamic_features
are dynamic.
- n_dynamic_features = 54
- n_static_features = 18
Hutter et al. 2011
- class ecole.observation.Hutter2011
Instance features from Hutter et al. (2011).
This observation function extracts a structured
Hutter2011Obs
.- __init__(self: ecole.observation.Hutter2011) None
- before_reset(self: ecole.observation.Hutter2011, model: ecole.scip.Model) None
Do nothing.
- extract(self: ecole.observation.Hutter2011, model: ecole.scip.Model, done: bool) Optional[ecole.observation.Hutter2011Obs]
Extract the observation matrix.
- class ecole.observation.Hutter2011Obs
Instance features from Hutter et al. (2011).
The observation is a vector of features that globally characterize the instance. See [Hutter2011] for a complete reference on this observation function.
- Hutter2011
Hutter, Frank, Hoos, Holger H., and Leyton-Brown, Kevin. “Sequential model-based optimization for general algorithm configuration.” International Conference on Learning and Intelligent Optimization. 2011.
- class Features
Members:
nb_variables
nb_constraints
nb_nonzero_coefs
variable_node_degree_mean
variable_node_degree_max
variable_node_degree_min
variable_node_degree_std
constraint_node_degree_mean
constraint_node_degree_max
constraint_node_degree_min
constraint_node_degree_std
node_degree_mean
node_degree_max
node_degree_min
node_degree_std
node_degree_25q
node_degree_75q
edge_density
lp_slack_mean
lp_slack_max
lp_slack_l2
lp_objective_value
objective_coef_m_std
objective_coef_n_std
objective_coef_sqrtn_std
constraint_coef_mean
constraint_coef_std
constraint_var_coef_mean
constraint_var_coef_std
discrete_vars_support_size_mean
discrete_vars_support_size_std
ratio_unbounded_discrete_vars
ratio_continuous_vars
- __init__(self: ecole.observation.Hutter2011Obs.Features, value: int) None
- constraint_coef_mean = <Features.constraint_coef_mean: 25>
- constraint_coef_std = <Features.constraint_coef_std: 26>
- constraint_node_degree_max = <Features.constraint_node_degree_max: 8>
- constraint_node_degree_mean = <Features.constraint_node_degree_mean: 7>
- constraint_node_degree_min = <Features.constraint_node_degree_min: 9>
- constraint_node_degree_std = <Features.constraint_node_degree_std: 10>
- constraint_var_coef_mean = <Features.constraint_var_coef_mean: 27>
- constraint_var_coef_std = <Features.constraint_var_coef_std: 28>
- discrete_vars_support_size_mean = <Features.discrete_vars_support_size_mean: 29>
- discrete_vars_support_size_std = <Features.discrete_vars_support_size_std: 30>
- edge_density = <Features.edge_density: 17>
- lp_objective_value = <Features.lp_objective_value: 21>
- lp_slack_l2 = <Features.lp_slack_l2: 20>
- lp_slack_max = <Features.lp_slack_max: 19>
- lp_slack_mean = <Features.lp_slack_mean: 18>
- property name
- nb_constraints = <Features.nb_constraints: 1>
- nb_nonzero_coefs = <Features.nb_nonzero_coefs: 2>
- nb_variables = <Features.nb_variables: 0>
- node_degree_25q = <Features.node_degree_25q: 15>
- node_degree_75q = <Features.node_degree_75q: 16>
- node_degree_max = <Features.node_degree_max: 12>
- node_degree_mean = <Features.node_degree_mean: 11>
- node_degree_min = <Features.node_degree_min: 13>
- node_degree_std = <Features.node_degree_std: 14>
- objective_coef_m_std = <Features.objective_coef_m_std: 22>
- objective_coef_n_std = <Features.objective_coef_n_std: 23>
- objective_coef_sqrtn_std = <Features.objective_coef_sqrtn_std: 24>
- ratio_continuous_vars = <Features.ratio_continuous_vars: 32>
- ratio_unbounded_discrete_vars = <Features.ratio_unbounded_discrete_vars: 31>
- property value
- variable_node_degree_max = <Features.variable_node_degree_max: 4>
- variable_node_degree_mean = <Features.variable_node_degree_mean: 3>
- variable_node_degree_min = <Features.variable_node_degree_min: 5>
- variable_node_degree_std = <Features.variable_node_degree_std: 6>
- __init__(*args, **kwargs)
- property features
A vector of instance features.